#### Law and Policy for the Quantum Age

Chris Jay Hoofnagle

UC Berkeley School of Law LIR series Technology, Law, and Society

March 8, 2020

< □ > < @ > < 클 > < 클 > · 클 · 의익은 1/21

#### Intro

#### QIS project

- Joint work with Simson Garfinkel
- Forthcoming as LAW AND POLICY FOR THE QUANTUM AGE (Cambridge U Press 2020)
- I am not a physicist
- Quantum Information Science (QIS)
- Quantum technologies (QT)
  - Metrology & sensing
  - Communications
  - Computing
- What policy choices?



#### Intro

#### QT: why now?

- China & EU investment explicitly to leapfrog over U.S.
  - Major scientific advances at TU-Delft (Microsoft)
  - U.S. response: \$1.2bn authorized
  - Limit is talent
- Electronic warfare / MASINT
- Tech fundamentals easier: commercial products can produce quantum effects
- Some quantum effects do not require supercooling



A Products Home / Thorlabs Discovery - Educational Products and Kits / Quantum Eraser Demonstration Kit





#### Quantis RNG OEM component

- > Highly resilient to environmental perturbations
- > Designed for mounting on PCB for embedded systems
- Instant entropy with high bit-rate of 4Mbits/sec
- > Affordable, compact and reliable
- > Uses quantum optic process to create true quantum randomness

#### Quantum effects

- Merger of quantum mechanics and information theory
- At quantum scales, nature is probabilistic and objects have attributes of both waves and particles
  - Nitrogen atoms used for sensing have a diameter of 1.12Å
    —alternatively a radius of 56 picometers (pm), 0.056 nanometers (nm)
    or 5.6 × 10<sup>-11</sup> meters.

### Waves and Particles



These colors are created by interference between two wave fronts: the light reflecting off the front side and the back side of the soap film.



Yet, the Suns ultra-violet light can dislodge electrons from the surface of metal, producing a slight voltage, while light from the red end of the spectrum can't

#### Uncertainty



 $\updownarrow \leftrightarrow$  0°+ 90°= all light blocked



 $\uparrow \searrow \leftrightarrow$  Notice the blackest block is  $0^{\circ}$ +  $90^{\circ}$ ; introducing  $45^{\circ}$ = 12%transmission!

### Three quantum effects underly QT

- Superposition
  - Particles can be in an indeterminate state-0 or 1 or between
- Entanglement
  - When particles are entangled, measurement of one causes the other to act in a predictable fashion, even when separated by great distances
- No cloning
  - At quantum scales, "observation" is a physical act that influences the quantum state

## Quantum sensing

- Most mature QT
  - Atomic clocks, MRI, NMR measure quantum effects
  - Most commonly rely on quantum entanglement and superposition
- Some do not require supercooling
- Nitrogen vacancy chambers as a promising medium
  - These are imperfections in diamonds, places where a single nitrogen atom is trapped by the strong bonds of neighboring carbon atoms
  - The nitrogen atom can be manipulated to produce quantum effects, even at room temp
  - Shining a laser at the nitrogen atom causes it to emit light that reveals subtle variations in the Earth's magnetic field.

#### Metrology and sensing

# Sensing implications

- Electronic warfare driven
- Quantum radar
- Ghost imaging, see through smoke, around corners
- SIGINT to MASINT
- Interferometry



#### Charting a New Course: Celestial Navigation Returns to USNA

Story Number: NNS151015-27 Release Date: 10/15/2015 3:34:00 PM

🗛 A A 🖾 🗎

By Lt. j.g. Devin Arnesen, U.S. Naval Academy Public Affairs

ANNAPOLIS, Md. (NNS) -- Picture this: A naval vessel is navigating the high seas thousands of nautical miles from land. Suddenly all navigation systems become inoperable. What happens next? What does this mean?





#### Quantum sonar

- Wu et al (2016) use a magnetic gradient tensor device, a SQUID—superconducting quantum interference device, suspended from a helicopter
- 2000 measurements/second. 1 microsecond time sync between devices in matrix
- If you know the strength and direction of a magnetic field with great precision, what can you find?
  - Mineral deposits, tunnels (including activity in them), infrastructure, hidden matériel
- What does this mean for submarine stealth?



#### Quantum communication

Quantum-enhanced classical encryption

- Quantum key distribution (QKD), because of no cloning, you can tell if your key has been intercepted
- Quantum random number generation (QRNG), because of quantum randomness, you get enough security to defend against quantum computer cryptanalysis
- Communication can proceed over standard channels typically with AES

#### Quantum communications

- Uses quantum effects such as the spin of particles to communicate information
- Because of no cloning, one will know if a listener is present
- Could change the "place" communications happens because of entanglement (but this is still sci fi)

### QKD & China

- Relies on entanglement, no cloning
- Distribute AES keys based on quantum randomness, invulnerable to even quantum computers
- Consequential development: China QKD by satellite = OTP distribution
- Strategy to address "pre-positioned devices"
- QKD has been around since the 1990s, why hasn't it taken off commercially?



#### Quantum internet — 2 fascinating ideas

- First, use quantum effects to communicate
- Boyd (University of Rochester) working on photon's spin/orbital momentum to communicate therefore more than 1 bit per photon



- Second, notion of "teleportation"
- We would need quantum memory (to overcome no cloning) + entanglement (Wehner et al. Science 2018)

#### Quantum computing basics

- Qubit (2<sup>n</sup> power)
  - Many kinds superconducting, trapped ion, photonic, quantum dot
- Three types of QC
  - Simulation
  - Annealers (leader is D-Wave)
  - NISQs

Uses

- Possible answer to slowdowns in classical
- Optimization
- Simulation of complex physical processes
- ML
- Discover nature of P, NP



### QC Challenges

- QC faces difficult challenges
- Mastery of superposition, entanglement
- Most qubits dedicated to error correction
- Keep an eye on Microsofts "topological qubit" involves splitting electrons!
- Decoherence measured in microseconds
- Many QCs require supercooling (15 millikelvin)(annealing, superconducting, but not ion traps, photonics)
- Error correction complicated by continuous variables
- + Software, control systems, etc
- Current NISQs will not scale to general purpose computers
- Significant minority warns of quantum winter

#### Keep an eye on D-Wave's annealer

- Qualified claims: "In half of 150 applications, performance/quality approaching/occasionally better than classical"
- Satellite placement
- Vehicular traffic analysis
- Aircraft gate assignment
- Placement of antennae
- Robot picking in warehouse
- Election modeling



イロト 不得 トイヨト イヨト

Webinar: Quantum Experiences: Applications and User Projects on D-Wave

### Quantum cryptanalysis

- State of the art in factoring
  - 20-bit number using D-Wave 2000 annealer (using 89 qubits) this is a surprise because annealers were thought to be more limited in function
  - Next gen will have 5,000 qubits
  - 768 bit number using classical computers
- NAS: RSA collapse not likely in the next decade
  - But the problem is transition period to post-Q crypto
- Google: to factor a strong key in a day, "would take 100 million qubits, even if individual quantum operations failed just once in every 10,000 operations."
- Realistic uses (not your CC numbers)

| T unious 1                                               | issumptions o       | 1 LIIOI | reaces and E | inor-conteeting                     | Coues        |                        |                                |                                                           |
|----------------------------------------------------------|---------------------|---------|--------------|-------------------------------------|--------------|------------------------|--------------------------------|-----------------------------------------------------------|
|                                                          |                     |         |              | Quantum<br>Algorithm<br>Expected to | #<br>Logical | # Physical             | Time<br>Required to            | Quantum-<br>Resilient                                     |
| Cryptos                                                  |                     | Key     | Security     | Defeat                              | Oubits       | Oubits                 | Break                          | Replacement                                               |
| vstem                                                    | Category            | Size    | Parameter    | Cryptosystem                        | Required     | Required <sup>a</sup>  | System <sup>b</sup>            | Strategies                                                |
| AFS-                                                     | Symmetric           | 128     | 128          | Grover's                            | 2 953        | $4.61 \times 10^{6}$   | $2.61 \times 10^{12}$          | Suuregies                                                 |
| GCM                                                      | encryption          | 192     | 192          | algorithm                           | 4 449        | $1.68 \times 10^7$     | Vrs                            |                                                           |
| [5]                                                      | eneryption          | 256     | 256          | uigorium                            | 6.681        | $3.36 \times 10^7$     | $1.97 \times 10^{22}$          |                                                           |
| [-]                                                      |                     |         |              |                                     | -,           |                        | yrs<br>$2.29 \times 10^{32}$   |                                                           |
| RSA [6]                                                  | Asymmetric          | 1024    | 80           | Shor's                              | 2 290        | $2.56 \times 10^{6}$   | 3 58 hours                     | Move to                                                   |
| KSA [0]                                                  | encryption          | 2048    | 112          | algorithm                           | 4 338        | $6.2 \times 10^{6}$    | 28 63 hours                    | NIST-selected                                             |
|                                                          | eneryption          | 4096    | 128          | uigorium                            | 8 434        | $1.47 \times 10^{7}$   | 229 hours                      | POC                                                       |
|                                                          |                     | 4050    | 120          |                                     | 0,454        | 1.47 ~ 10              | 229 110013                     | algorithm<br>when<br>available                            |
| ECC                                                      | Asymmetric          | 256     | 128          | Shor's                              | 2,330        | $3.21 \times 10^{6}$   | 10.5 hours                     | Move to                                                   |
| Discrete                                                 | encryption          | 386     | 192          | algorithm                           | 3,484        | $5.01 \times 10^{6}$   | 37.67 hours                    | NIST-selected                                             |
| -log<br>problem <sup>c</sup><br>[7,8]                    |                     | 512     | 256          |                                     | 4,719        | 7.81 × 10 <sup>6</sup> | 95 hours                       | PQC<br>algorithm<br>when<br>available                     |
| SHA256<br>[9]                                            | Bitcoin<br>mining   | N/A     | 72           | Grover's<br>Algorithm               | 2,403        | 2.23 × 10 <sup>6</sup> | $1.8 \times 10^4$ years        |                                                           |
| PBKDF<br>2 with<br>10,000<br>iteration<br>s <sup>d</sup> | Password<br>hashing | N/A     | 66           | Grover's<br>algorithm               | 2,403        | 2.23 × 10 <sup>6</sup> | 2.3 × 10 <sup>7</sup><br>years | Move away<br>from<br>password-<br>based<br>authentication |

# TABLE 4.1 Literature-Reported Estimates of Quantum Resilience for Current Cryptosystems, under Various Assumptions of Error Rates and Error-Correcting Codes

18/21

# QT & Policy

- What policy issues with QTs force us to confront?
- What are the strategic consequences of QT?
- What are the indications/warnings that an adversary possesses QT?

イロト 不得 トイヨト イヨト

3

19/21

- How is the technology likely to diffuse?
- What QT countermeasures will arise?
- How to foster a QIS workforce?
- Industrial policy
- Privacy

## **QIS** Research

| Nation                      | Estimated Number of Papers |
|-----------------------------|----------------------------|
| China                       | 8006                       |
| US                          | 6071                       |
| European Union $+$ national | 5819                       |
| EU alone                    | 2520                       |
| Japan                       | 1491                       |
| Canada                      | 1425                       |
| UK                          | 894                        |
| Germany                     | 785                        |
| Foundations                 | 618                        |
| Australia                   | 598                        |

# Going Deeper?

- Pay attention to the dramatic developments in sensing. these are not as hyped yet are strategically consequential and data intensive
- Find ways to start practicing (remember the talent limit)
  - Academic partners
  - Most basic level: free accounts on D-Wave, IBM
- Post quantum encryption + (AES 256)